I-BAF工艺在 高浓度氨氮废水处理中应用

I-BAF工艺在 高浓度氨氮废水处理中应用

范达茂

 

摘要:综述了 高浓度氨氮废水的排入水体后的危害,并从脱 氮机理上阐述了新型高效的生物脱氮工艺(I-BAF工艺)在高浓 度氨氮废水处理中的优势及其存在的问题。

 

关键词:高浓度氨氮废水 固定化 微生物曝气生物滤池  硝化 反硝化

 

1引言

近年来,随着化肥、石油化 工等行业的迅速发展壮大,由此而 产生的高氨氮废水也成为行业发展制约因素之一;据报道,2001年我国 海域发生赤潮高达77次,氨氮是 污染的重要原因之一,并且被 氧化生成的硝酸盐和亚硝酸盐还会影响水生生物甚至人类的健康。特 别是高 浓度氨氮废水造成的污染。因此,经济有 效的控制高浓度氨氮废水污染也成为当前环保工作者研究的重要课题,得到了 业内人士的高度重视。目前,处理氨氮 废水的物理、化学法 等常规技术根本不能经济有效的治理目的,存在处理效果差,运行费用高的问题。生物处理法中,一般采用的A/O法、A2/O 法、SBR序批处 理法等对脱氮具有一定效果的工艺技术,一般处 理的废水氨氮含量不能超过300mg/L,同时,为了实现脱氮的目的,必须补 充相应的碳源来 配合实现氨氮的脱除,使运行 费用有很大的增加,是一般 企业根本无法承受。高浓度 氨氮废水来源多,排放量大,采用经 济有效的技术实现处理要求迫在眉睫。

2 I-BAF工艺生物脱氮

近 年来,随着生 物工程技术的发展,特别是 定向分离和培育的特性微生物工程技术的飞速进步,使传统 脱氮理论受到挑战,并在实 际高氨氮废水的处理项目中被打破。 由此发展的新工艺固定化 微生物曝气生物滤池(简称I-BAF):是在固 定化微生物技术(IM)基础上,结合曝气生物滤池(BAF)发展而 成的污水处理新装 置,生物脱 氮理论上有了很多进展,新的脱 氮理论在实践上得到了很好的验证,如: ①亚硝酸硝化/反硝化工艺。该工艺可以节省25%硝化曝气量,节省40%的反硝化碳源,节省50%反硝化反应器容积。 ②厌氧氨氧化。一些微 生物能够以硝酸盐、二氧化 碳和氧气为氧化剂将氨氧化为氮气。③好氧反硝化。在好氧条件下,某些好 氧反硝化菌能够通过氨氮的生物作用形 成氧化 氮和氧化亚氮等气态产物。④同时硝化/反硝化工艺(SND)。好氧环 境和缺氧环境同时存在的一个反应器中,由于许 多新的氮生物化学菌族被鉴定出来, 在菌胶团作用下,硝化/反硝化同时进行,从而实 现了低碳源条件下的高效脱氮。

2.1 亚硝酸化反硝化工艺

生物硝 化反硝化是应用最广泛的脱氮方式。由于氨 氮氧化过程中需要大量的氧气,曝气费 用成为这种脱氮方式的主要开支。亚硝酸化反硝化(将氨氮 氧化至亚硝酸盐氮即进行反硝化),不仅可 以节省氨氧化需氧量而且可以节省反硝化所需炭源。Ruiza等[1]用 合成废水(模拟含 高浓度氨氮的工业废水)试验确 定实现亚硝酸盐积累的最佳条件。要想实 现亚硝酸盐积累,pH不是一 个关键的控制参数,因为pH在 6.45~8.95时,全部硝化生成硝酸盐,在pH<6.45或pH>8.95时发生硝化受抑,氨氮积累。当DO=0.7 mg/L时,可以实现65%的氨氮 以亚硝酸盐的形式积累并且氨氮转化率在98%以上。DO<0.5 mg/L时发生氨氮积累,DO>1.7 mg/L时全部 硝化生成硝酸盐。  

刘超翔等[2]短 程硝化 反硝化处理焦化废水的中试结果表明,进水COD、氨氮、TN 和酚的浓度分别为1201.6、510.4、540.1、110.4 mg/L时,出水COD、氨氮、TN和酚的 平均浓度分别为197.1、14.2、181.5、0.4 mg/L,相应的去除率分别为83.6%、97.2%、66.4%、99.6%。与常规 生物脱氮工艺相比,该工艺氨氮负荷高,在较低的C/N值条件下可使 TN去除率提高。

2.2 厌氧氨氧化

厌氧氨 氧化是指在厌氧条件下氨氮以亚硝酸盐为电子受体直接被氧化成氮气的过程。厌氧氨 氧化的生化反应式为:

NH4++NO2→N2↑+2H2O

厌氧氨 氧化菌是专性厌氧自养菌,因而非常适合处理含NO2、低C/N的氨氮废水。与传统工艺相比,基于厌 氧氨氧化的脱氮方式工艺流程简单,不需要外加有机炭源,防止二次污染,又很好的应用前景。厌氧氨 氧化的应用主要有两种:全程自 养脱氮工艺和与中温亚硝化结合,构成中温亚硝化-厌氧氨氧化联合工艺。

全程自 养脱氮工艺是在限氧的条件下,利用完 全自养性微生物将氨氮和亚硝酸盐同时去除的一种方法,从反应形式上看,它是全 程自养脱氮和厌氧氨氧化工艺的结合,在同一 个反应器中进行。

2.3 好氧反硝化

传 统脱氮理论认为,反硝化 菌为兼性厌氧菌,其呼吸 链在有氧条件下以氧气为最终电子受体在缺氧条件下以硝酸根为最终电子受体。所以若 进行反硝化反应,必须在缺 氧环境下。近年来,好氧反 硝化现象不断被发现和报道,逐渐受到人们的关注。一些好 氧反硝化菌已经被分离出来,有些可 以同时进行好氧反硝化和异养硝化(如 Robertson等分离、筛选出的Tpantotropha.LMD82.5)。这样就 可以在同一个反应器中实现真正意义上的同步硝化反硝化,简化了工 艺流程,节省了能量。

贾剑晖等[3]用序批 式反应器处理氨氮废水,试验结 果验证了好氧反硝化的存在,好氧反 硝化脱氮能力随混合液溶解氧浓度的提高而降低,当溶解氧浓度为0.5 mg/L时,总氮去除率可达到66.0%。

在反硝 化过程中会产生N2O是一种温室气体,产生新的污染,其相关 机制研究还不够深入,许多工 艺仍在实验室阶段,需要进 一步研究才能有效地应用于实际工程中。另外,还有诸 如全程自养脱氮工艺、同步硝 化反硝化等工艺仍处在试验研究阶段,都有很好的应用前景。

3I-BAF工艺的优势

在大幅 度提高生物脱氮效率的生物学基础上,效率的 提高并不意味着成本的上升。在这种前提下,固定化微生物-曝气生物滤池工艺(I-BAF)处理高 氨氮废水的工艺技术应运而生,该技术 在处理高氨氮废水方面有独特的技术及经济优势:

(1)I-BAF 技术打 破和超越了常规硝化/反硝化 生物治理氨氮废水的理论基础。由于采 用了特殊生物工程技术分离和培养的专用菌族(噬氮菌菌族),配合满 足噬氮菌处理高氨 氮废水 的生物环境需要的载体,在I-BAF池中同时存在着硝化/反硝化、亚硝酸硝化/反硝化工艺、同时硝化/反硝化、好氧反硝化、厌氧氨 氧化等生物反应历 程,能够发 挥出最高效的脱氮效率。

(2) 设备投资小,运行费用低、运行管理简单。由于能 够更加高效的去除高氨氮,同时在低有机物、高氨氮 的特性废水处理过程中,补充碳源极少,本处理工艺产生的污 泥量极少,无需增 加高额的污泥处置投资和费用,在长期 的水处理设施运行中,微生物 和载体一经投入无需补加,固定化 微生物技术对进水的抗波动能力强,现场操 作简便,更加容 易实现自动化控制,所以,I-BAF工艺技 术处理高氨氮废水表现出了强大的技术经济优势。
   (3) I-BAF工艺技 术可以实行模块式应用和管理,针对不同的处理要求,可以增 加或减少处理单元,改变处理后出水指标,在增加 相应的处理模块的情况下,可以对 出水进 行更深度的处理,使其达 到回用指标要求,用于生产工艺、循环冷却水、绿地或冲洗等使用,节约大量补充用水,为企业 节省大量的排污费的同时,可以节约 大量的用水费用。

目前,I-BAF工艺技 术已经运用在浙江利园皮革厂、浙江恒 昌皮革及深圳龙岗垃圾填埋厂等产生高浓度氨氮废水的企业,并取得 了非常明显的效果,至此,I-BAF工艺技 术处理高氨氮废水的研究取得了广泛和有效的理论基础和工程实践效果。

4 小   
  (1)I-BAF在运行 过程中出现了明显的NO2-积累现象,而出水 连续检测和在反应器内不同部位取样分析均未发现NO3--N的相应增加,与此同时对TN去除率却较高,说明NH3-N被氧化为NO2--N后并没 有进一步被氧化为NO3--N,而是直 接被反硝化去除,表现出 显著的亚硝酸硝化反硝化特征。
(2)有关I-BAF亚硝酸 硝化反硝化的机理、作用因 子及其影响规律的研究尚需进一步深入,同时在 工程运行事反应器出水的NH3-N和NO2--N浓度还比较高,因此有 关如何提高脱氮效能、反应器 结构和运行条件的优化研究将具有更重要的工程意义和应用价值。
(3)本技术 不仅承载污染负荷高,抗冲击力强,运行稳定,而且加药量少,运行费用低,出水水质好。

参考文献

[1]Ruiza G,Jeisonb D,Chamya R. Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration.Water Research,2003,37:1371~1377

[2]刘超翔,胡洪营,彭党聪,等.短程硝 化反硝化工艺处理焦化高氨废水.中国给水排水,2003,19(8):11

[3]贾剑晖.氨氮废 水处理过程中的好氧反硝化研究.南平师专学报,2004,(2):10~20
友情链接:    网投时时彩可靠网站_*官方推荐*_[大地 22022]   737彩票-安全购彩   汇旺彩票---首页欢迎你   彩神帝-首页